高中数学知识点:利用均值不等式求最值的方法
均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。对于有些题目,可以直接利用公式求解。但是有些题目必须进行必要的变形才能利用均值不等式求解。下面是一些常用的变形方法。一、配凑
1. 凑系数
例1. 当 时,求 的最大值。
解析:由 知, ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到 为定值,故只需将
当且仅当 ,即x=2时取等号。
解析:由题意知 ,首先要调整符号,又 不是定值,故需对 进行凑项才能得到定值。
∵
当且仅当 时等号成立。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
3. 分离
解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。
评注:分式函数求最值,通常化成 ,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
二、整体代换
解法1:不妨将 乘以1,而1用a+2b代换。
http://www.xuexifangfa.com/uploads/allimg/0908/09260C3H-27.gif
解法2:将 分子中的1用
http://www.xuexifangfa.com/uploads/allimg/0908/09260AZ6-34.gif
评注:本题巧妙运用“1”的代换,得到 与 的积为定值,即可用均值不等式求得 的最小值。
三、换元
例5. 求函数 ,则 时,
http://www.xuexifangfa.com/uploads/allimg/0908/0926064c0-40.gif
当且仅当 ,即 。
评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。
四、取平方
例6. 求函数 的和为定值。
http://www.xuexifangfa.com/uploads/allimg/0908/0926063N4-44.gif
评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。
页:
[1]