高考数学解题思想:函数与方程思想
语文
数学
英语
物理
化学
生物
政治
地理
历史
专题汇总
历年真题
模拟试题
家长专区
全国高校
高校专业
报考指南
往年分数
考试政策
高考数学复习是有规律有内部联系的复习过程,在所有题型中一直串联着数学思想在里面,而不是单独的进行题海战术,做会一道题,完全掌握解题思维好于单独做100道题。
新东方网高考频道整理高考数学蕴含的六大数学思想,大题无外乎就这几类,吃透规律事半功倍。
高考数学解题思想:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
例3 若曲线y=2x+1与直线y=b没有公共点,则b的取值范围是________。
分析:本题从方程的角度出发可直接作出方程y=2x+1的方程y=b的图像,观察即可得出结论,也可将“曲线y=2x+1与直线y=b没有公共点”转化为判断方程b=2x+1何时无解的问题。
解:因为函数y=2x+1的值域为(1,+∞),所以当b≤1,即-1≤b≤1时,方程b=2x+1无解,即曲线y=2x+1与直线y=b没有公共点。
例4 设函数f(x)=log2(2x+1)的反函数为y=f-1(x),若关于x的方程f-1(x)=m+f(x)在上有解,则实数m的取值范围是 。
分析:求出函数f(x)的反函数f-1(x)=log2(2x-1),可将方程转化为m=log2(2x-1)-log2(2x+1),于是原问题转化为求函数y=log2(2x-1)-log2(2x+1),x∈的值域。
解:由已知f-1(x)=log2(2x-1),所以f-1(x)=m+f(x)化为m=log2(2x-1)-log2(2x+1),令y=log2(2x-1)-log2(2x+1),x∈,则y=log2■=log2(1-■),此函数在上是单调递增函数,所以值域为,于是m的取值范围为。
2013空军招飞报考常识汇总
运动员、艺考生等特殊类招生百科手册
高三开学九大科目学习方法整理
名师点评:哪些亮点让这些作文得满分
家长如何用一年时间成为志愿专家
北京四中往年开学测试题汇总
更多高考资讯及备考资料在》 》新东方网高考频道
更多新东方学校高考课程在》 》报班通道
页:
[1]