高考论坛

 找回密码
 立即注册
查看: 233|回复: 1

高三数学指导:掌握常规数学思维模式(嘉?

[复制链接]

11万

主题

11万

帖子

33万

积分

论坛元老

Rank: 8Rank: 8

积分
338765
发表于 2016-7-24 00:59:38 | 显示全部楼层 |阅读模式
  特级教师 刘勋
          文科考生说,我们不考数归法,我告诉你:归纳猜想验证,这是一个解答题、体现思维能力的好的思维模式。
          分析、讨论、判断、取舍;归纳猜想验证;一般特殊相互转化,这些最基础、最常规的思维模式,妙用无穷,看似寻常最奇崛,成为容易却艰辛(王安石)。
          2、方程式←→函数化
          方程问题函数化,函数问题方程化,这两化把方程的思想,函数思想融为一体,相互转化,使利用函数性质解题这个数学的大课题生辉,诸如不等←→函数增、减等一系列的简单思维模式到处可用。
          二次函数y=ax2+bx+c(a≠0)求极值方法之一是判别式法(函数问题方程化)∵方程ax2+bx+(c-y)=0有实根,∴△=b2-4a(c-y)≥0
          4ay≥4ac-b2 a>0时 y≥■即
          y小=■;a
          即y大=■
          例2.已知A、B是△ABC的两个内角,且tanA、tanB是方程x2+mx+m+1=0的两个实根,求实数m的取值范围。
          韦达定理,和积关系→常见转化方式
          ■
          ∴A+B=45°→x1=tanA
          且都大于0。
          难点如何定m的范围:函数化。
          f(x)=x2+mx+m+1有二正根且都在(0,1)之间的条件:(△≥0不能保证根的范围)
          对照图象:
          ■
          (为什么不必△≥0?你能很清晰吗?)
          解得:-1
          这是典型的方程问题函数化,确定参数取值范围的试题。
          例3.(2008上海 理11)方程x2+■x-1=0的解可视为函数y=x+■的图像与函数y=■的图像交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk(k≤4),所对应的点(x1,■)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是_________。
          答案:(-∞,-6)∪(6,+∞)
          ●解法1:依题意x4+ax-4=0←→x3+a=■ 由图示及奇函数y=x3的图像关于原点对称的性质,得知当y=x3+a的图像从过B点起,向下平移或向上平移时,交点均在y=x同侧。
          ∵A(-2,2),B(2,2),∴把A、B坐标代入y=x3+a得a=-6或a=6,故a6即为所求。
          ●解法2:依题意,结合图形分析,■,得y=a+8或y=a-8
          分别令y-2,得a6。
回复

使用道具 举报

0

主题

5320

帖子

1万

积分

论坛元老

Rank: 8Rank: 8

积分
11078
发表于 2016-7-24 01:38:25 | 显示全部楼层
分页标题#e#
          [点拨评析]作为一道综合性较强、分值不高的填空题,从数形结合的思想出发,通过作图开辟解题思路,简明、具体。试题本身就在提示你,数形结合可以作为一种思维模式,实现方程化←→函数化的完美结合。
          解题的通式、通法都可以从中提炼出可操作的模式,形成思维规律。如解不等式sinx>■。如下思维操作定能做一题,通一类。
          1.结合周期T=2π,可先找x∈(0,2π)的解集,再一般化;2.结合函数值的符号先肯定或否定两个区间:sinx>■,Ⅲ、Ⅳ象限均不是解;3.结合单位圆先找相等的界限sinx=■,x=■或x=■;4.根据函数单调性,作取舍:■
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-23 06:23 , Processed in 0.054027 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表