高考论坛

 找回密码
 立即注册
查看: 288|回复: 0

2016高考物理答题 巧用动量定理

[复制链接]

11万

主题

11万

帖子

33万

积分

论坛元老

Rank: 8Rank: 8

积分
338765
发表于 2016-7-24 18:37:55 | 显示全部楼层 |阅读模式
  动量定理
       
       
                  是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多,本文试从几个角度谈动量定理的应用。
       
       
                  用动量定理解释生活中的现象
       
       
                  竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
       
       
                  [解析]纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变.在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:μmgt=mv。
       
       
                  如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
       
       
                  如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变。粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
       
       
                  用动量定理解曲线运动问题
       
       
                  以速度v0 水平抛出一个质量为1 kg的物体,若在抛出后5 s未落地且未与其它物体相碰,求它在5 s内的动量的变化.(g=10 m/s2)。
       
       
                  [解析] 此题若求出末动量,再求它与初动量的矢量差,则极为繁琐。由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量。
       
       
                  则
       
       
                  Δp=Ft=mgt=1×10×5=50 kg·m / s。
       
       
                  [点评] ①
运用Δp=mv-mv0求Δp时,初、末速度必须在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理Δp=Ft求解Δp.②用I=F·t求冲量,F必须是恒力,若F是变力,需用动量定理I=Δp求解I。
       
       
                  用动量定理解决打击、碰撞问题
       
       
                  打击、碰撞过程中的相互作用力,一般不是恒力,用动量定理可只讨论初、末状态的动量和作用力的冲量,不必讨论每一瞬时力的大小和加速度大小问题。
       
       
                  蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg的运动员,从离水平网面3.2
m高处自由落下,触网后沿竖直方向蹦回到离水平网面1.8 m高处.已知运动员与网接触的时间为1.4 s.试求网对运动员的平均冲击力.(取g=10
m/s2)
       
       
                  [解析] 将运动员看成质量为m的质点,从高h1处下落,刚接触网时速度方向向下,大小 。弹跳后到达的高度为h2,刚离网时速度方向向上,大小,
       
       
                  接触过程中运动员受到向下的重力mg和网对其向上的弹力F.选取竖直向上为正方向,由动量定理得: 。由以上三式解得: ,代入数值得: F=1.2×103
N。
       
       
                  用动量定理解决连续流体的作用问题
       
       
                  在日常生活和生产中,常涉及流体的连续相互作用问题,用常规的分析方法很难奏效.若构建柱体微元模型应用动量定理分析求解,则曲径通幽,“柳暗花明又一村”。
       
       
                  有一宇宙飞船以v=10 km/s在太空中飞行,突然进入一密度为ρ=1×10-7
kg/m3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上.欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少?(已知飞船的正横截面积S=2
m2)
       
       
                  [解析]选在时间Δt内与飞船碰撞的微陨石尘为研究对象,其质量应等于底面积为S,高为vΔt的直柱体内微陨石尘的质量,即m=ρSvΔt,初动量为0,末动量为mv.设飞船对微陨石的作用力为F,由动量定理得,则

       
       
                  根据牛顿第三定律可知,微陨石对飞船的撞击力大小也等于20 N.因此,飞船要保持原速度匀速飞行,助推器的推力应增大20 N。
       
       
                  动量定理的应用可扩展到全过程
       
       
                  物体在不同阶段受力情况不同,各力可以先后产生冲量,运用动量定理,就不用考虑运动的细节,可“一网打尽”,干净利索。
       
       
                  质量为m的物体静止放在足够大的水平桌面上,物体与桌面的动摩擦因数为μ,有一水平恒力F作用在物体上,使之加速前进,经t1
s撤去力F后,物体减速前进直至静止,问:物体运动的总时间有多长?
       
       
                  [解析]本题若运用牛顿定律解决则过程较为繁琐,运用动量定理则可一气呵成,一目了然.由于全过程初、末状态动量为零,对全过程运用动量定理,有 ,故

       
       
                  [点评] 本题同学们可以尝试运用牛顿定律来求解,以求掌握一题多解的方法,同时比较不同方法各自的特点,这对今后的学习会有较大的帮助。
       
       
                  动量定理的应用可扩展到物体系
       
       
                  尽管系统内各物体的运动情况不同,但各物体所受冲量之和仍等于各物体总动量的变化量。
       
       
                  质量为M的金属块和质量为m的木块通过细线连在一起,从静止开始以加速度a在水中下沉,经时间t1,细线断裂,金属块和木块分离,再经过时间t2木块停止下沉,此时金属块的速度多大?(已知此时金属块还没有碰到底面.)
       
       
                  [解析]金属块和木块作为一个系统,整个过程系统受到重力和浮力的冲量作用,设金属块和木块的浮力分别为F浮M和F浮m,木块停止时金属块的速度为vM,取竖直向下的方向为正方向,对全过程运用动量定理得①细线断裂前对系统分析受力有
, ② ,联立①②得 。
       
       
                  综上,动量定量的应用非常广泛.仔细地理解动量定理的物理意义,潜心地探究它的典型应用,对于我们深入理解有关的知识、感悟方法,提高运用所学知识和方法分析解决实际问题的能力很有帮助。
       

          
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-11-18 20:33 , Processed in 0.058833 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表