高考论坛

 找回密码
 立即注册
查看: 473|回复: 0

高二数学解析几何

[复制链接]

11万

主题

11万

帖子

33万

积分

论坛元老

Rank: 8Rank: 8

积分
338765
发表于 2016-8-5 10:03:40 | 显示全部楼层 |阅读模式
已知点P(2,0)及圆C:x^2+y^2-6x+4y+4=0 设过点P的直线L1与圆C交于M、N两点。当MN的绝对值为4时,求以线段MN为直径的圆Q的方程。
答案: 圆C:x2+y2-6x+4y+4=0,(x-3)2+(y+2)2=9,圆心C的坐标为(3,-2),半径为3.
∵过点P(2,0)的直线L被圆截得的线段MN的长度为4, ∴L的斜率必存在,设为k,则直线L的方程为y=k(x-2), 由圆C的半径长为3,线段MN的长为4, 可知点C到直线L的距离为√5,
∴利用点到直线的距离公式可求点C到直线L的距离为|k+2|/√(1+k2), 令|k+2|/√(1+k2)=√5,得k=1/2,直线L的方程为x-2y-2=0. 又点C、P的连线的斜率为-2
∴CP⊥直线L, 由圆的几何性质可知,点C恰好是线段MN的中点,
∴以MN为直径的圆的圆心为点C,半径为MN的一半, 其方程为(x-2) 2+y2=4.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-7-24 09:16 , Processed in 0.050909 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表