高考论坛

 找回密码
 立即注册
查看: 308|回复: 0

高二数学:椭圆问题

[复制链接]

11万

主题

11万

帖子

33万

积分

论坛元老

Rank: 8Rank: 8

积分
338765
发表于 2016-8-5 10:03:43 | 显示全部楼层 |阅读模式
知椭圆C:x^2/a^2+y^2/b^2=1的左焦点F,右顶点A,动点M为右准线上一点(异于右准线与x轴的交点),FM交椭圆C于P,已知椭圆C的离心率为2/3,点M的横坐标为9/2。设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围
设P(x0,y0),A(3,0),M(9/2,yM) 过点P做PB垂直于AF,设右准线与与x轴的交点为N,
则PB:MN=FB:FN 即y0/yM=(x0+2)/(9/2+2) 即yM=(13y0/2)/(x0+2) k1=y0/(x0-3),
k2=yM/(9/2-3) k1·k2=y0/(x0-3)*yM/(9/2-3) =2y0yM/[3(x0-3)] =13y0*y0/[3(x0-3)(x0+2)]      x0^2/9+y0^2/5=1,y0^2=5/9(9-x0^2) k1·k2=(65/27)*(9-x0^2)/[(x0-3)(x0+2)]   =-(65/27)*(x0+3)/(x0+2) =-(65/27)*[1+1/(x0+2)]
FM交椭圆C于P,-2
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-11-18 20:49 , Processed in 0.062673 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表